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Introduction
ML-DSA is a Schnorr-like signature scheme and applies the Fiat-Shamir heuristic to an inter-
active protocol between the prover and the verifier. Similarly to the standardized ML-DSA,
which uses matrices to construct an MLWE problem, our research in asymmetric cryptog-
raphy is also based on matrix computations. Moreover, we think that particular interest is
to continue the investigation and research of non-commutative algebraic structures to create
quantum-safe cryptographic schemes. One of the possible approaches is to use the so-called
matrix power function (MPF), which is a conjectured one-way function [7]. This way we can
keep our proposals fairly close to the classical early algorithms.
MPF can have numerous realizations depending on platform and powermatrices definition. In
our recent work, we consider the family ofmodularmaximal-cyclic groups usually denoted by
M2t , which is defined by two non-commuting generators a and b and the following relations:

M2t = ⟨a, b|a2t−1

= e, b2 = e, bab−1 = a2t−2+1⟩, (1)

where e is the identity of the group. These groups have a valuable property that they cannot
be represented either by direct or a free product of several groups [2]. This is useful since
the discrete logarithm mapping cannot be applied to simplify the cryptanalysis of problems
defined in such groups. Therefore, we think that the realization of digital signatures based on
such groups has some scientific interest.
Here we use the results previously published in [3] as a basis to construct a valid signature
using the Fiat-Shamir heuristic. Additionally, we consider the secure parameter values of our
signature based on the output of the selected hash function.

1 Mathematical background
Let S be a multiplicative (semi)group, where each element has a multiplicative order of at
most ord S. Also, let Zord S be the ring of integers, where operations are performed modulo
ord S. We use the notations Sm×m and Zm×m

ord S to denote sets of matrices with entries in S
and Zord S respectively.

Definition 1 LetW ∈ Sm×m andX ∈ Zm×m
ord S be two squarem×mmatrices. The left-sided

matrix power function (LMPF) is a mappingZm×m
ord S ×Sm×m 7→ Sm×m denoted asEL = XW,

where EL ∈ Sm×m is the left matrix exponent with entries calculated as follows:

(eL)ij =
m∏

k=1

w
xik
kj . (2)
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Definition 2 LetW ∈ Sm×m andY ∈ Zm×m
ord S be two squarem×mmatrices. The right-sided

matrix power function (RMPF) is a mapping Sm×m×Zm×m
ord S 7→ Sm×m denoted asER = WY,

where ER ∈ Sm×m is the right matrix exponent with entries calculated as follows:

(eR)ij =
m∏

k=1

w
ykj

ik . (3)

We refer to S as a platform (semi)group and to Zord S as a power ring. Also, we refer to W as
a base matrix and toX,Y as the power matrices.
Notably, in our case S = M2t is non-commuting, and hence the order of operations matters.
Therefore, in this paper, we use the notions of LMPF and RMPF mappings. However, since it
is clear from the context which mapping (left- or right-sided) is being applied we may omit
the first letter of the abbreviations, and refer to them simply by MPFs.
To ensure the validity of our previous MPF-based schemes where we usedM2t as a platform
group we have defined the following templates [4]:

• The base matrixW ∈ Mm×m
2t

has the following structure [4]:

W =




ba2ω11+1 aω12 · · · bα1caω1c · · · ba2ω1m+1

a2ω21 aω22 · · · bα2caω2c · · · a2ω2m

· · · · · · · · · · · · · · · · · ·
a2ωi1 aωi2 · · · bαicaωic · · · a2ωim

· · · · · · · · · · · · · · · · · ·
a2ω(m−1)1 · · · · · · · · · · · · a2ω(m−1)m

ba2ωm1+1 aωm2 · · · bαmcaωmc · · · ba2ωmm+1




, (4)

where the values of ωij can be chosen randomly from the ring Z2t and the value of c
between 2 andm− 1 is chosen at random and fixed afterwards.

• The generatorL ∈ Zm×m
2t

of the set of left power matrices has the following structure
[4]:

li1 + lim ≡ 0 mod 2 ∀i = 1, 2, . . . ,m. (5)
Other entries of the matrix L can be chosen freely from Z2t .

• The generatorR ∈ Zm×m
2t

of the set of right power matrices has the following struc-
ture [4]:

rcj ≡ 0 mod 2 ∀j = 1, 2, . . . ,m. (6)
Other entries of the matrixR can be chosen freely from Z2t .

Notably, any of the power matrices satisfying these templates are singular modulo 2, and
hence power matrices cannot be inverted modulo any power of two. Furthermore, these
templates are preserved when calculating polynomials of the form f(x) = α1x + α2x

2 +
. . .+αkxk . However, if the templates are neglected, then the key identity does not hold, and
hence the cryptographic primitive falls apart.

2 Sigma identification protocol
We now present the SIP previously proposed in [3]. The prover generates his data: a private
key PrK = (X,Y), where X =

∑m−1
i=1 xiL

i and Y =
∑m−1

i=1 yiR
i. His public key is

A =
(
XW

)Y .
Assume that the prover desires to prove his identity to the verifier without revealing it. He
initiates the following three-step communication [3]:

1. The prover picks at random two coefficient vectors u⃗ and v⃗ and computes matrices
U =

∑m−1
i=1 uiL

i,V =
∑m−1

i=1 viR
i.

2. Using these matrices he calculates a commitment C⃗ = {C0,C1,C2}, where:

C0 =
(UW

)V
, C1 =

(UW
)Y

, C2 =
(XW

)V
. (7)

CECC 2024 2



A. Mihalkovich, E. Sakalauskas, K. Luksys MPF-based signature using Fiat-Shamir heuristic

3. The verifier generates a challenge of the form H⃗ = {H1,H2}, whereH1 ∈ Span(L),
andH2 ∈ Span(R) come from linear spans of the firstm powers ofL andR denoted
by Span(L) and Span(R) respectively. Note that the zeroth power is excluded since
the identity matrix does not follow the presented templates. He sends the challenge
H⃗ to the prover.

4. The prover responses by computing a vector S⃗ = {U + H1X,V + YH2}. The
response S⃗ is sent to the verifier.

The verifier accepts if the following key identity is valid:
(S1W

)S2 = C0 ⊙CH2
1 ⊙ H1C2 ⊙ H1AH2 . (8)

Interestingly enough, the order of actions on the right-hand side of identity (8) does notmatter
since all the base matrices (i.e.,Ci’s andA) consist of commuting entries.

3 Fiat-Shamir heuristic
We use the secure hash algorithm 3 (SHA-3), which comes from a subset of the Keccak fam-
ily of cryptographic primitives, to implement the Fiat-Shamir heuristic. For the commitment
C⃗ and the message µ we compute SHA-3(C⃗, µ). We use the hash output to obtain the co-
efficients of polynomials used to calculate the challenge H⃗. Therefore, we need the SHA-3
to produce a hash of length at least 2m · (t − 1) bits. We cut the obtained string into 2m
parts of t − 1 bits, i.e. SHA-3(C⃗, µ) = α1∥α2∥ . . . ∥αm∥β1∥β2∥ . . . ∥βm, where ∥ is the
concatenation operator.
The Fiat-Shamir signature scheme can now run as presented below:

1. The signer performs the first and second steps of the SIP. In other words, he acts as a
prover and obtains a pair of matrices (U,V) and a commitment vector C⃗;

2. The signing algorithm SignAlg calculates a challenge H⃗ as presented above and sends
it to the signer. Therefore, SignAlg acts as a verifier in the presented SIP but uses the
SHA-3 to calculate two vectors of coefficients rather than generating them at random;

3. The signer calculates a response S⃗ for the obtained challenge as in the SIP;
4. Upon obtaining the response SignAlg outputs a signature Sig(µ) = (C⃗, S⃗).

To check the validity of Sig(µ) the verification algorithm VerAlg obtains a hash SHA-3(C⃗, µ),
calculates H⃗ as above, and accepts the signature if the identity (8) is valid. Otherwise, VerAlg
rejects the signature.

4 Security analysis
The security of our scheme is based on the following problem:

Definition 3 Let W ∈ Mm×m
2t

be a publicly known matrix with the structure (4). Also, let
W ∈ Mm×m

2t
be publicly known. A decisional non-commuting MPF problem is to decide if

there is a pair of matrices (X,Y) satisfying constraints (5) and (6) respectively, such thatA =(
XW

)Y .

Previously we have considered the complexity of this problem in our paper [4]. There we have
shown that this problem is NP-complete. However, in the context of the KEP, the challenge
space is limited to the linear spans Span(L) and Span(R) for left and right power matrices
respectively. Therefore the cardinality of the challenge space is 22m(t−1).
In the paper [5] we have shown that the entries of the MPF value matrix A are uniformly
distributed in a cycle ⟨a⟩ generated py powers of a. Also, in that paper, we considered the
security game aimed at compromising the Diffie-Hellman type KEP presented in [4]. Based on
the results of that research we claim that the shared key matrixK is indistinguishable from a
randomly generated matrixK′ whose entries are uniformly and independently sampled from
⟨a⟩. Therefore, we make a conjecture that the presented scheme might be quantum-resistant.
However, additional research is needed to either approve or disprove our claim.
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The SIP presented here is built using the same tools as in [4]. Therefore, the challenge space
remains the same. The main difference is that here we use three extra matrices as a com-
mitment C⃗. However, all of these matrices have the same structure as the public key matrix
A. Therefore, the explored statistical properties also hold for these matrices. Based on these
facts we claim that

(
S1W

)S2 is indistinguishable from a randomly generated matrix whose
entries are uniformly and independently sampled from ⟨a⟩. Also, we have shown in [3] that
the MPF-based SIP presented above has the special honest verifier zero-knowledge (HVZK)
and knowledge soundness properties. Also, the presented scheme has unpredictable commit-
ments, which can be formalized by the following proposition:

Proposition 1 Assume that the prover’s keys PrK and PuK as well as the conversation
(C⃗, H⃗, S⃗) are fixed. Then for the randomly chosen matrices Û ∈ Span(L) and V̂ ∈ Span(R)
the probability that the prover and the verifier produce the conversation (C⃗, H⃗, S⃗) is 2−2m(t−1).

The proof of this fact relies on the notion of linear span and its basis. Relying on these three
properties and an exponentially growing challenge space, we claim that the proposed digital
signature is secure [1].

5 Security parameters
Since SHA-3 produces outputs of predetermined length, namely 224, 256, 384 or 512 bit
strings, we base the choice of public parameters on the length of SHA-3 output.
Once the platform group size is chosen, the format of the square matrices is calculated mo-
mentarily. This is because we must have exactly 2m coefficients to define two polynomials.
We present a table with public parameter values based on the length of the SHA-3 hash.

Table 1: Public parameters for standardized SHA-3 output lengths
SHA-3-224 SHA-3-256 SHA-3-384 SHA-3-512

M32,m = 28 M32,m = 32 M16,m = 64 M32,m = 64
M256,m = 16 M512,m = 16 M32,m = 48 M512,m = 32
M512,m = 14 M217 ,m = 8 M128,m = 32 M217 ,m = 16
M215 ,m = 8 M233 ,m = 4 M512,m = 24 M233 ,m = 8

We can see from the presented table that we have to settle for a balance between two pa-
rameters t and m. We think that M512 is a reasonable candidate for the platform group for
practical implementation since this group can be used for all of the standardized hash lengths,
and the size of matrices is sufficient. Furthermore, creating coefficients from a hexadecimal
string produced by most software is easy. However, note that the security of our scheme
comes from the complexity of the decisional non-commuting MPF problem and the security
game defined in [4].

Conclusions
In this paper, we have shown how to construct the digital signature based on the MPF map-
ping defined over a non-commuting algebraic group using the Fiat-Shamir heuristic. Relying
on our previous results, we have proven Proposition 1, thus establishing unpredictable com-
mitments property. Furthermore, in Section 5, we used the standardized SHA-3 function to
generate the vector of coefficients to calculate the power matrices. Based on our observations,
summarized in Table 1, we suggestM512 as a platform group for our scheme.
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Public key cryptosystem design based on MRHS problem

(Extended Abstract)
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Multiple Right-Hand Sides (MRHS) equations are formal inclusions in the form xM ∈ S,
where M is some known matrix, and S is a set of potential right-hand sides. In general,
it is difficult to solve a system of MRHS equations. In [2], we show that the existence of
a solution of a random MRHS system (MRHS problem) is an NP-complete problem. On
the other hand, we study some specific classes of MRHS systems, which can be solved in
polynomial time. Given existence of easy and (probably) difficult instances, it is conceivable
that MRHS problem can be a basis for a (quantum resistant) public key cryptosystem.

In [4] we have presented a concept of a digital signature scheme based on MRHS equation
systems. The main principle of the system was to describe a symmetric cipher with a masked
set of MRHS equations. The secret key was based on the symmetric key of the underlying
cipher. The signature generation was produced by simulating encryption, while signature
could be verified by checking the consistency of the MRHS system. Unfortunately, practical
versions of the system based on known ciphers (such as AES and LowMC) could be solved
with MRHS solver [1] due to a structured version of the joint matrix of the MRHS system.

Our new idea of the MRHS problem based public key cryptosystem is based on observa-
tions from [3]. If the joint matrix of the MRHS system is sparse, the system can potentially
be solved by a class of bit-flipping algorithms (and as further research shows, it can be even
faster with genetic algorithms). On the other hand, MRHS systems with dense joint matrix
seem difficult to solve with any known method, while easy to verify (they are in the NP class).
Thus, we might try to construct a public key system based on trap-door one-way function,
where the trap-door basically masks underlying sparse MRHS system (easy to solve), and
presents public dense MRHS system (hard to solve).

The main idea of the public key cryptosystem

LetM be random sparse n×kmmatrix over F2. The matrix can be written as a concatenation
ofm blocks Mi with n rows and k columns each. Furthermore, we require that rank(M) = n,
and rank(Mi) = k, for each i = 1, 2, . . . ,m. Let R be a random dense invertible n×n matrix
over F2. Matrices (R,M) form a secret key of the cryptosystem. In practical terms, they
can be deterministically derived (e.g. using a PRNG or XOF) from a shorter secret key k of
required length given by desired security level. Dense matrix P = RM is the public key.

It should be difficult to factor public matrix P into the original secret components R, M,
or to find other decomposition P = R′M′, where M′ is sparse. This problem is related to
binary matrix factorization [5], but we have not been able to find an exact reference for this
specific type of problem.

The encryption process is simple: Let m ∈ Fn2 be a cleartext. In this abstract we suppose
it is a random bit string. Let v = mP. Split vector v into m blocks of length k denoted by
vi. Select m random strings ci of length k, such that ci ∈R Fk2 \ {vi}. The encryption of
message m is c = (c1, c2, . . . , cm).

∗This work was in part supported by the NATO SPS project G5985, and in part by grant VEGA 1/0105/23.



The encrypted message along with matrix P gives rise to a MRHS system in the form
mPi ∈ Fk2 \ {ci} (which can be simply written as mPi ̸= ci). In general, it is difficult to
compute the solution of this MRHS system.

The recipient can however compute a solution of the hidden MRHS system yMi ̸= ci,
using algorithm that exploit the sparsity of the joint matrix M. After this, the recipient
finds the decrypted message using m = yR−1.

Parameter selection

The parameters of the cryptosystem must be carefully selected to create a secure system.
Parameter k defines an equivalence between the public and hidden MRHS system, and a
related k-XOR-SAT problem. For given k, we need a different ratio between the number of
MRHS equations m and number of unknowns n. The ration should be selected in such a way
that random system of given size should have exactly one solution (or respectively, expected
on average). Note that due to the construction, we are guaranteed that the solution of the
system exists, but we want to ensure there are no other (false) solutions. However, if we
increase m two much, it might be possible to find the sparse decomposition of the public
matrix.

Larger k increases the ciphertext size, thus optimal selection seems to be k = 2. The
public system can be mapped to 2-XOR-SAT problem, which is polynomially equivalent
to 3-SAT, and thus NP-hard. On the other hand, sparse (secret) verion of the problem
is nearer to a 2-SAT problem, which is polynomially solvable. The density of the secret
matrix (average number of ones in each column) cannot be too low, otherwise the matrix
factorization is trivial (due to repeated colums). On the other hand, the complexity of solving
the corresponding secret systems quickly grows with the density. Thus we should use lowest
possible density that ensures that sparse matrix factorization is difficult.

For k = 2, every MRHS equation is satisfied (vector yMi ∈ S) with probability 3/4.
Probability that each of the MRHS equations in the system is satisfied is (3/4)m. The
condition that we expect 1 solution on average requires that 2n · (3/4)m = 1. Given n, we
get that m = −n/ log2(3/4) ≈ 2.4n.

Note that n should be larger than security level λ. Using approach from [1], we can solve
the public system by using linear algebra to produce 3n/2 candidate solutions in the first n/2
blocks, which are verified using the rest of the system. Thus, the logarithm of complexity
is at most n/2 · log2(3) ≈ 0.79n. Thus, given security level λ, we need n > 1.26λ, m > 3λ.
E.g. for security level λ = 128, we can use cleartexts of size n = 162 bits, and ciphertext of
size km = 768 bits. The public key size is then n× km = 124416 bits (15.2 kB). It might be
possible to compress the system size further, if we can securely employ (quasi-)cyclic matrices
instead of general matrices.

References

[1] Raddum, H., and Zajac, P. MRHS solver based on linear algebra and exhaustive search.
Journal of Mathematical Cryptology 12, 3 (2018), 143–157.

[2] Zajac, P. MRHS equation systems that can be solved in polynomial time. Tatra Mt. Math.
Publ 67, 1 (2016), 205–219.

[3] Zajac, P. On solving sparse MRHS equations with bit-flipping. Publ. Math. Debrecen 100
(2022), 683–700.

[4] Zajac, P., and Spacek, P. A new type of signature scheme derived from a MRHS representation
of a symmetric cipher. Infocommunications Journal 11, 4 (2019), 23–30.

[5] Zhang, Z., Li, T., Ding, C., and Zhang, X. Binary matrix factorization with applications.
In Seventh IEEE International Conference on Data Mining (ICDM 2007) (2007), pp. 391–400.



SIGNITC: Supersingular Isogeny Graph

Non-Interactive Timed Commitments

Knud Ahrens
University of Passau, Germany
knud.ahrens@uni-passau.de

1 Introduction

The concept of time-lock puzzles (TLP) [19] has been around for more than
twenty years and timed commitments [5] developed shortly after. We will use the
rather new definition of Non-Interactive Timed Commitment schemes (NITC)
by Katz, Loss, and Xu [17] from the year 2020. These protocols satisfy binding
and efficient verification just like usual commitment schemes, but a commitment
can be opened by anyone after some delay tfd, so hiding only lasts for this time
tfd. A possible application is a sealed bid auction, where all bids can be revealed
after time tfd even if some of the bidders refuse to open their commitment. Other
applications include e-voting, fair coin tossing or contract signing [5].

Our approach uses random walks in the isogeny graph of supersingular ellip-
tic curves to construct a NITC, hence the name Supersingular Isogeny Graph
Non-Interactive Timed Commitments or SIGNITC1 for short. The main idea is
that computing isogenies of large or non-smooth degree is slow, but if we know
the endomorphism ring of the starting curve, we can find a smooth shortcut.
So we use a secret isogeny to a curve with known endomorphism ring for fast
commitment and verification, but the forced decommitment has to compute the
delay isogeny and thus it needs time at least tfd.

The advantage of isogeny-based cryptography is that it is presumably quan-
tum secure and relatively slow compared to other fields of post-quantum cryp-
tography. Since we need a delay, this is a good thing. The field has undergone
thorough scrutiny due to the candidates SIKE [16] and SQISign [12] in NIST
competitions for post-quantum protocols and is still very active. The proto-
col has no theoretical black box algorithms like zero knowledge proofs, succinct
non-interactive arguments of knowledge or one-way functions. To our knowledge
this is the first quantum secure NITC scheme with explicit algorithms.

Related Work There are several NITC schemes [2, 10, 17, 21] using non-
interactive zero knowledge (NIZK) proofs and/or repeated squaring in a group
of unknown order, but none of them is quantum secure.

NITC schemes are related to verifiable delay functions (VDF) [6] in the
sense that both have fast verification and a function that needs a long time
to evaluate. We can construct NITC schemes from VDFs, but the contrary is
difficult or impossible, depending on the protocol.

1pronounced like “signets”
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VDFs have direct applications to blockchains and there already are several
approaches. There are even some isogeny-based candidates for VDFs, but they
all still have some flaws. The pairing-based approach [11] is not quantum se-
cure. Chavez-Saab et al. [8] use SNARGS and their verification time increases
for larger delays. Finally, there is one base on Kani’s criterion for abelian sur-
faces [13], but the authors state that it is not clear how to implement it. A
different approach based on endomorphism rings [1] has the problem that the
generation of a challenge also gives (a significant advantage in finding) the re-
sponse. So it is closer to a NITC scheme and gave the initial idea for this article.
De Feo et al. [7] introduced isogeny-based delay encryption, but they use the
same delay as the pairing-based VDF.

2 Preliminaries

Non-Interactive Timed Commitments The first formal definition of Non-
Interactive Timed Commitments (NITC) was given by Katz et al. [17]. It con-
sists of five algorithms PGen, Com, ComVrfy, DecVrfy and FDecom with the fol-
lowing properties: The parameter generation PGen produces a common reference
string crs. The commitment algorithm Com takes a message m and has a com-
mitment C and proofs πcom, πdec as output. The proof πcom is used by the
commitment verification algorithm ComVrfy to verify that C can be opened by
FDecom. The decommitment verification algorithm DecVrfy uses πdec to check
if m corresponds to C and FDecom can forcefully open C to reveal m.

To be relevant for applications a NITC also needs to satisfy three further
properties. It has to be practical, i.e. verification has to be faster than forced
opening, and satisfy hiding, i.e. the commitment does not leak information about
the message, and binding, i.e. a commitment can not be opened to two different
messages.

Isogeny-based Cryptography An isogeny is a homomorphism between el-
liptic curves and isomorphic elliptic curves have the same j-invariant. Isogeny-
based cryptography mainly uses isogenies between supersingular elliptic curves.
These curves are defined over fields Fp2 of characteristic p > 0 and have endomor-
phism rings that are isomorphic to maximal orders O in the quaternion algebra
Bp,∞ [20]. The Deuring correspondence relates an isogeny φ : E → E′ of degree
d between supersingular curves to a left O- and right O′-ideal Iφ of reduced
norm d where O ∼= EndE and O′ ∼= EndE′ [22]. We assume that computing
the codomain of an isogeny of degree d =

∏
qeii needs at least

∑
ei
√
qi field op-

erations (for distinct primes qi). For our purposes isogenies φ : E → E′ can be
given as a single point K ∈ E generating its kernel and we write E′ ∼= E/⟨K⟩.

Finding the endomorphism ring or equivalently the corresponding maximal
order of a supersingular elliptic curve is considered a hard problem. Finding
an isogeny between two given supersingular curves is also considered hard, but
finding a left O- and right O′-ideal for given O and O′ is not [23]. If we know the
endomorphism ring of a supersingular curve E, we can use this to find shortcuts
for an isogeny φ : E → E′. To do this we translate the isogeny into an ideal,
use KLPT [18] or similar algorithms to find an equivalent ideal of desired norm
and use IdealToIsogeny algorithms to find an isogeny ψ : E → E′ of smooth
degree or a higher dimensional isogeny that allows to efficiently compute φ.
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3 The Protocol

We start by fixing the supersingular elliptic curve E0 : y
2 = x3 + x with known

endomorphism ring EndE0 and corresponding maximal order O0. Then we
choose a prime p ≡ 3 mod 4 such that ds = 2κ ≳ √p divides p+1 where κ is the
security parameter. For a given delay tfd ∈ poly(log p) we find e and dT =

∏
qeii

such that dT is coprime to ds, divides p
e − (−1)e and satisfies

∑
ei
√
qi ≥ tfd.

Next we define a map F : a + bi 7→ a + |b| mod N that maps j-invariants of
supersingular elliptic curves (written as elements of Fp[i] ∼= Fp2) into the group

M = Z/NZ for N ≤ ⌊p1/4/12⌋. Together with some precomputations this forms
the common reference string crs that is generated by the parameter generation
algorithm PGen.

For the commitment algorithm Com we randomly choose two secret isogenies
φs : E0 → Es and φ

′
T : E0 → E′

T of fixed degrees ds and dT , respectively. Let the
point K ′

T ∈ E0 be the generator of kerφ′
T . Then the kernel of the pushforward

φT = [φs]⋆φ
′
T : Es → ET is generated by KT = φs(K

′
T ). The message m ∈ M

is hidden by computing u = m− F (j(ET )) ∈M where j(ET ) is the j-invariant
of ET . The output of Com is (C, πcom, πdec) where C = (Es,KT , u), πcom is
empty and πdec allows DecVrfy to use the same shortcuts as Com.

Given a commitment (Es,KT , u) the commitment verification ComVrfy just
checks that Es is a supersingular elliptic curve, KT is a point on Es, u ∈ M
and optionally KT ∈ F2

p2e . The decommitment verification DecVrfy uses πdec
to compute F (j(ET )) the same way Com does. For given commitment C and
message m it checks if u + F (j(ET )) = m. To forcefully open a commitment
(Es,KT , u) the algorithm FDecom computes ET ∼= Es/⟨KT ⟩ as codomain of the
delay isogeny φT with kernel ⟨KT ⟩ and returns m = u+ F (j(ET )).

E0

Es ∼= E0/⟨Ks⟩

E′
T
∼= E0/⟨K ′

T ⟩

ET ∼= Es/⟨KT ⟩

φs

φ′
T

φT = [φs]⋆φ
′
T

φ′
s = [φ′

T ]⋆φs

ψ = φT ◦ φs

ψ̃

Figure 1: Walk in the isogeny graph with (efficiently computable) smooth de-

grees deg(φs), deg(ψ̃) and large and/or non-smooth degree degφT .

Computing φs is fast because its degree ds is smooth and divides p+1. The
degree dT , however, was chosen in a way that computing the delay isogeny φT is
slow. To find a shortcut for Com and DecVrfy we use the knowledge ofO0, φs and
φ′
T . We translate the isogenies φs and φ

′
T into ideals Is and I

′
T and compute the

ideal Iψ = Is∩I ′T corresponding to the isogeny ψ = φT ◦φs : E0 → ET . Then we

use KLPT [18] and IdealToIsogeny algorithms to find an isogeny ψ̃ : E0 → ẼT
of smooth degree as in SQIsign [9] or a higher dimensional isogeny that allows
to compute ψ efficiently as in SQIsign2D-West [3]. The 1-dimensional variant
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is depicted in Figure 1. Note that these shortcuts might change ET to ẼT
where ẼT is isomorphic to ET or its Galois conjugate, i.e. j(ẼT ) = a ± bi for
j(ET ) = a+bi. This allows us to efficiently compute F (j(ET )) = F (j(ẼT )) and
u = m− F (j(ET )).

4 Security

Binding The commitment C = (Es,KT , u) fixes a curve ET ∼= Es/⟨KT ⟩ up
to isomorphism so we have a unique j-invariant jT = j(ET ) associated to this
commitment. SinceM is a group and u, F (jT ) ∈M this gives a unique m ∈M .
So valid commitments can not be opened to different messages and SIGNITC
satisfies binding.

Hiding An adversary sends two message m0,m1 and receives the commit-
ment (Es,KT , ub) corresponding to mb for a random b ∈ {0, 1}. It knows that
F (j(ET )) is equal to F0 = ⊖ub⊕m0 or F1 = ⊖ub⊕m1, but none of them is more
likely than the other. To verify one of them, it would have to find F (j(ET ))
and hence a curve isomorphic to ET or its Galois conjugate. To find a shortcut
for φT : Es → ET we need to know Os ∼= EndEs or an isogeny connecting
Es to a curve with known endomorphism ring. Both φs and Os ∼= EndEs
are secret and finding an isogeny from E0 to Es or finding Os ∼= EndEs are
considered hard problems. We assume that the fastest attack (with a quantum

computer) is to find an isogeny from E0 to Es in Õ(d
1/4
s ) operations [14, 15].

Since d
1/4
s ≳ p1/8 and tfd ∈ poly(log p), the fastest way to find F (j(ET )) is

to compute φT of degree dT =
∏
qeii , i.e. using FDecom, which is assumed to

take at least
∑
ei
√
qi ≥ tfd operations. So for time less than tfd an adversary

can choose the correct b only be negligibly better than guessing and SIGNITC
satisfies hiding.

Practicality We want the verification (and optimally also the commitment)
to be significantly faster than the forced decommitment. The commitment veri-
fication ComVrfy only needs O(1) operations. The algorithms Com and DecVrfy

are very similar. Computing isogenies of smooth degree, translating isogenies
starting at E0 into ideals and using KLPT and IdealToIsogeny has been im-
plemented efficiently for SQIsign or SQIsign2D-West. So Com and DecVrfy need
poly(log p) operations. Forced decommitment FDecom is also polynomial in log p,
but it takes at least tfd operations and we can make tfd almost as large as p1/8

without breaking hiding. So we can choose tfd large enough to ensure that Com,
ComVrfy and DecVrfy are much faster than FDecom and SIGINTC is practical.
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Fast tripling on Hessian Kummer lines

Thomas Decru & Sabrina Kunzweiler

Extended abstract

Throughout the past decades, elliptic curves have become a cornerstone of cryp-
tography in the form of ECC, but also as a viable alternative in the post-
quantum era by means of isogenies connecting them. To speed up computa-
tions, various models such as the Montgomery and Edwards forms have been
studied. A twisted Hessian curve Ha,d/k is a projective elliptic curve defined
by the polynomial

aX3 + Y 3 + Z3 = 3dXY Z,

where a(d3 − a) ̸= 0 and (0 : −1 : 1) is the neutral element. Furthermore,

Ha,d[3] = ⟨(1 : −α : 0), (0 : −ω : 1)⟩,

where ω is a cubic root of unity and α3 = a. Explicit formulae to compute
all 3-isogenies with domain Ha,d are well-known, but we provide an alternative
point of view. For the sake of simplicity, assume an untwisted Hessian curve for
now; i.e. a = 1.
It is well known that the coordinates (X : Y : Z) correspond to level-3 theta
functions [2]. In particular, the action by the 3-torsion points on the coordinates
is normalized as

(X : Y : Z) + P1 = (Y : Z : X), (X : Y : Z) + P2 = (ω2X : ωY : Z),

where P1 = (1 : −1 : 0) and P2 = (0 : −ω : 1). A similar observation in the
context of level-2 theta functions, has led to a simple description of 2-isogenies
by Robert [3, Section 7]. In his description, the 2-isogeny is decomposed into
three operations: coordinate-wise squaring, a Hadamard transformation, and
coordinate-wise scaling. We show that an analogous decomposition can be
achieved for 3-isogenies in Hessian form.
Define the following operations:

• ⊙3: Coordinate-wise cubing; i.e. ⊙3(X : Y : Z) = (X3 : Y 3 : Z3).

• M : Discrete Fourier transform; i.e.

M(X : Y : Z) =



1 1 1
1 ω ω2

1 ω2 ω


 ·



X
Y
Z


 .
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• C(λ,µ): Scaling; i.e. Cλ,µ(X : Y : Z) = (λX : µY : µZ).

One can then show that the map

ϕ1 : (X : Y : Z) 7→ C(1,d′) ◦M ◦ ⊙3(X : Y : Z),

where (d′)3 = d3(d3 − 1), defines an isogeny with kernel ⟨(0 : −ω : 1)⟩. It is
unsurprising that computing a (radical) 3-isogeny requires computing a cubic
root (in this case d′), but when given the information of a 9-torsion point laying
above (0 : −ω : 1), one can furthermore show that no root need be computed.
The discrete Fourier transform map M can be shown to exhibit additional in-
teresting behaviour; e.g.

M(⟨(0 : −ω : 1)⟩) = ⟨(−1 : 1 : 0)⟩, M(⟨(−1 : 1 : 0)⟩) = ⟨(0 : −ω : 1)⟩,

where equality needs to be interpreted on an isomorphic curve with a distinct
parameter d. In particular, it can be seen as a nontrivial symplectic base-change
on the 3-torsion of Ha,d.
The strength of this interpretation is most eminent on the Hessian Kummer
line. Indeed, given that negation on Ha,d is given by swapping the Y - and Z-
coordinates, one can define the Hessian Kummer line HKa,d as the codomain of
the projection map

π : Ha,d → HKa,d, (X : Y : Z) 7→ (X : U) = (X : Y + Z).

With slight abuse of notation, from this one can then show that for example
the isogeny ϕ1 can be interpreted on the Hessian Kummer line as

ϕ1 : (X : U) 7→ (aX3 + U3 : d(2aX3 − U3) + 3aX2U).

The interpretation of our three operations from before on HKa,d are as follows:

• ⊙3 : (X : U) 7→ (aX2(U + dX) : U(dU2 − aX2));

• M : (X : U) 7→ (X + U : 2X − U);

• Cλ,µ : (X : U) 7→ (λX : µU).

Remarkably, the (potentially expensive) multiplications by cubic roots of unity
from M have completely vanished on the Kummer. One can then show that in
this interpretation, it holds that the isogeny projected on the Kummer can be
computed as

ϕ1 : (X : U) 7→ C(1,d) ◦M ◦ ⊙3(X : U).

One can verify that the dual isogeny ϕ̂1 also has kernel generated by (0 : −ω : 1),
such that the multiplication-by-3 map can be expressed as applying this last
formula twice since [3] = ϕ̂1◦ϕ1. From this it follows that on any twisted Hessian
Kummer line HKa,d, multiplication-by-3 can be evaluated in 4M+4S+8Ma,d,
where M,S,Ma,d denote a multiplication, a squaring and a multiplication by
a curve constant respectively. Given an appropriate curve (e.g. an untwisted
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Hessian curve with a = 1 and d small such that Md is closer to an addition
than a multiplication), this collapses to a mere 4M + 4S. The previous state-
of-the-art for tripling on elliptic curves with similar appropriately-chosen curve
parameters a and d was 4M + 8S in [1] (or 4M + 6S if multiplication by ω is
cheap but we do not require such field restrictions). Compared to tripling on
Kummer lines, the previous state-of-the-art was 5M + 5S on the Montgomery
Kummer line.
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Differential MITM attacks on SLIM and LBCIoT
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1 Introduction
Lightweight cryptography addresses the problem of using cryptography in constrained envi-
ronments, such as sensors, IoT devices with limited computational power, memory, battery,
etc. Since conventional cryptographic algorithms are impractical in these scenarios, dedicated
constructions are proposed. SLIM [1] and LBCIoT [5] are lightweight 32-bit block ciphers.
The 32-bit block is divided into left and right 16-bit halves. Both ciphers use an 80-bit key to
derive 32 round keys, each 16 bits long. SLIM is a Feistel cipher, and even though the round
function of LBCIoT resembles a Feistel cipher, its structure is different.

We propose and analyze two improvements to a differential meet-in-the-middle (MITM)
cryptanalysis [3], and apply it at SLIM and LBCIoT. Our attack at LBCIoT is the best known
attack to date. Furthermore, we show problems in the analysis of differential attacks that
are of independent interest. Namely, the problem of using low-probability differentials, and
a problem with commonly used assumptions of filter uniformity.

2 Attacking SLIM and LBCIoT

2.1 Overview of the differential MITM attack

Let E, D : {0, 1}l × {0, 1}n → {0, 1}n be the encryption and decryption functions of a block
cipher with the key length l and the block size n. In the rest of the paper we assume E can be
split into three consecutive transformations E = Eout ◦ Em ◦ Ein. For iterated block ciphers,
e.g., SLIM and LBCIoT, various splits are possible using subsequent rounds. In such case,
we denote the respective numbers of rounds by rin, rm, and rout.

A difference of two n bit vectors is a bitwise xor of these vectors. A differential ∆ = (α →
β) over Em is a pair of input and output differences. Its probability is usually given by this
formula, where k is a key for the entire cipher, with Em using only the relevant bits:

Pr[Em(k, x) ⊕ Em(k, x ⊕ α) = β; for random k ∈ {0, 1}l and x ∈ {0, 1}n]. (1)

We show in Section 3.1 that for practical application of both differential attack and differential
MITM attack it is important to distinguish whether (1) is calculated for a random or fixed k.

∗pegro@protonmail.com
†martin.stanek@fmph.uniba.sk
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Given a differential ∆ = (α → β), we denote by kin the set of indices of key bits whose
values are sufficient to compute a plaintext block P̃ from any block P , such that Ein(P ) ⊕
Ein(P̃ ) = α. Similarly, kout is the set of indices whose values are sufficient to compute C̃
from any block C, such that E−1

out(C) ⊕ E−1
out(C̃) = β. See Figure 1 for visual representation

of these concepts.

P C

C̃

βα

2−p

rin rout

Ein Eout

kin kout

P̃

rm

Em

Figure 1: Splitting a cipher for differential MITM attack

The differential MITM attack is a chosen plaintext attack, recently proposed and used
to attack multiple block ciphers [2, 3, 6]. The main idea of the attack is to find any pair of
plaintexts P , P̃ , with corresponding ciphertexts C, C̃, such that the differential ∆ occurs for
Em. The successful search will reveal candidate key bits for kin and kout. We find such a pair
P , P̃ using MITM approach.

1. For a fixed random P , we guess the value i for kin, and compute P̃ such that the
difference of P and P̃ after the transformation Ein results in α.

2. We ask for the ciphertext C corresponding to P and ciphertext Ĉ corresponding to P̃
(using chosen plaintext oracle). We store the pair (Ĉ, i) in a hash table, using Ĉ as key.

3. Independently, we guess the value j for kout, and compute C̃ from C such that their
difference after E−1

out is β. Then, for each pair (C̃, i) found in the hash table, we get a
candidate combination (i, j) for kin, and kout. We store this candidate in a multiset.

Since the probability of the differential ∆ is 2−p, we repeat the procedure κ · 2p times with
different P , so that we can expect the differential to occur κ times for the correct (i, j) values
from the actual key. Generally, κ is a small constant. In our experiments κ = 7 was sufficient.
There is a possibility to optimize the search if kin and kout overlap.

2.2 Identical bits

In the candidates (i, j), we noticed bits with the following property, the value of the bit was
identical across all candidates with the highest multiplicity. Based on this observation, we
propose the following: The attack outputs one partial candidate – the indices of identical bits,
and their values. In our experiments (on SLIM and LBCIoT) almost all bits were identical.

In the rare instance when the number of candidates with the highest multiplicity is much
smaller than the number of candidates satisfying the identical bits 2|kin|+|kout|−m (m is the
number of identical bits), then the attack should output the exact set of candidates.
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If multiple differentials are known, we can repeat the attack for each differential, hopefully
covering the majority of round key bits for the first rin rounds and the last rout rounds. The
remaining few bits can be brute-forced.

2.3 Deterministic bits

The notion of deterministic bits allows us to detect situations when a particular differential
certainly did not occur, thus making the attack faster. Deterministic bits for a differential
∆ = (α → β) and Eout are a subset of bits in a ciphertext block whose difference is constant,
provided that the difference before Eout is β.

We use the deterministic bits as a filter, to detect incorrect P or guesses of kin. In our
experiments, we could often skip the third step, as there was no valid pair (Ĉ, i) stored in the
hash table. The hash table was nonempty less than once every 210-th random plaintext P .

2.4 Attacks

We denote by DM(rin, rm, rout) the differential MITM attack on (rin +rm +rout)-round cipher
split into rin-round Ein, rm-round Em, and rout-round Eout. We have applied our attacks at
SLIM and LBCIoT. The attack on LBCIoT is the best known attack to this date.

bits recovered
cipher rounds attack T S D |kin| |kout|

SLIM 14∗ differential [4] 232 212 232 - 12
16 DM(3, 11, 2) κ · 271 κ · 265 232 45 26
18∗ DM(3, 13, 2) κ · 273 κ · 267 232 42 26
19 linear [7] 264.4 238 232 - 36

LBCIoT 19 differential [4] 232 23 231 does not work†

25 DM(4, 17, 4) κ · 271 κ · 271 232 37 38
26∗ DM(4, 18, 4) κ · 267 κ · 265 232 37 30

(∗) The attack fails for a substantial portion of keys, see Section 3.1.
(†) The published version of the attack fails. But it can be tweaked to be correct.

Table 1: Selected attacks on reduced versions of SLIM of LBCIoT

3 Problems in analyzing cryptographic attacks

3.1 Low-probability differentials

SLIM and LBCIoT were analyzed in [4] using differential cryptanalysis. We use the differen-
tials found by the authors of [4]. We have experimentally verified the probabilities of these
differentials (according to the equation (1)).

The probability of differential, as defined in (1), does not guarantee the desired property
for each fixed key we aim to reconstruct in the classical differential and differential MITM
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attacks. This is an issue, especially for differentials with probabilities close to 2−n, where a
selection of plaintexts is not independent, since almost the entire plaintext space is exhausted.

We illustrate this problem on SLIM and LBCIoT, where the authors of [4] employ dif-
ferentials with probability close to 2−n (2−32). We performed a simple experiment where a
random key is tested on the entire plaintext space to find out, whether the desired differential
occurs at least once. The results presented in Table 2 show that for a substantial portion of
10 000 keys we tested, the output difference was never observed. For such keys, the classical
differential cryptanalysis and the differential MITM cryptanalysis can never succeed.

r α β 2p % of keys
SLIM 11 4827 0080 0020 08b4 2−26 0%

12 0b82 000a 0a00 801b 2−28 30.06%
13 a208 a000 a000 b208 2−31 40.61%

LBCIoT 16 0006 0400 0020 1000 2−26 0%
17 0006 0400 0100 2040 2−28 0.01%
18 6000 0040 0000 0800 2−30 5.95%

Table 2: Percentage of tested keys for which the differential never occurs in SLIM and LBCIoT

3.2 Problems with l-bit filters

In our experiments, we have noticed that the standard and commonly used assumptions of
filter uniformity do not hold for small attacks, even by several orders of magnitude (depending
on the cipher and the filter size). This affects the overall complexity estimates for these attacks
as well. It remains an open problem whether the estimates hold for more rounds.

More specifically, the time and space complexities of this attack depend on the expected
number of candidates found, and this number is, according to [2, 3, 6]: κ ·2p ·2|kin|+|kout|−n for
some constant κ. The papers get to these estimates by taking the maximal possible number
of candidates 2|kin|+|kout|, and reducing them by the application of an n-bit filter by the factor
2n. Specifically, “after matching through the relation Ĉ = C̃”, i.e. matching on n bits. Table
3 shows the theoretical, expected number of candidates and the actual number of candidates
found by the differential MITM attack for comparison.

cipher rounds attack total expected

SLIM 8 DM(1, 6, 1) 119 κ · 2−1

8 DM(2, 4, 2) 9 102 387 458 752
10 DM(1, 8, 1) 166 56

LBCIoT 12 DM(2, 8, 2) 22 κ · 2−16

14 DM(2, 10, 2) 40 κ · 2−9

18 DM(2, 14, 2) 72 κ · 20

Table 3: Number of candidates (experiments with κ = 7)
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A new approach to evolution of bijective S-boxes with AI based

swap predictions

(Extended abstract)

Terezia Gurbalova Pavol Zajac ∗
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Evolution of S-boxes

In this article, the term n-bit S-box will denote any bijective vectorial Boolean function, S : Fn2 → Fn2 .
Let Sn denote a set of all n-bit S-boxes.

In cryptographic applications, we require that S-boxes have some specific qualities, such as low differ-
ential uniformity and high non-linearity [1]. In general, let ν : Sn → R denote some function that measures
the relative quality of an S-box. We say that S-box S1 has higher quality than S-box S2 if ν(S1) > ν(S2).
We say that S-box S1 ∈ Sn is optimal (in Sn) if for any S-box S2 ∈ Sn, ν(S2) ≤ ν(S1).

An S-box evolution is a sequence of S-boxes S1, S2, . . . , Sm given by some function f : Sn → Sn, such
that Si+1 = f(Si) with the property that ν(Si) < ν(Sj) for all 1 ≤ i < j ≤ m. An optimal function f is
defined in such a way, that Sm is optimal for each starting S1.

Intuitively, some optimal function f must exists for every n and ν, but it is not known how to construct
it efficiently. Instead, we want to study the opposite approach: define some efficient function f , and observe
the properties of S-boxes obtained by evolution (using function f) of randomly selected starting S-boxes.

Let τi,j denote a swap operation performed on an S-box vector of values. That is, let τi,j(S1) = S2.
Then S1(i) = S2(j), S1(j) = S2(i), and S1(x) = S2(x) for each x ̸∈ {i, j}. We say that swap operation
τi,j improves S-box S1, if and only if ν(S1) < ν(τi,j(S1)).

Given starting S-box S1, we can generate any other S-box S2 with a sequence of swap operations of
length at most 2n (the length of the vector of values of S1), even the optimal ones. Unfortunately, such a
sequence of swaps is not necessarily evolution sequence (according to our definition), as some swaps along
the way might reduce the score given by ν (to later produce an even better score).

Our object of study in this contribution is an evolution sequence given by a series of swaps. Our aim
is to find a predictor for a suitable swap operation that improves of the S-box. Given S-box S, predictor
π should output two integers i, j that define swap operation τi,j . Predictor π is successful, if the score
of the new S-box improves, that is ν(τπ(S)(S)) > ν(S). Predictor π should have better success rate than
using randomly generated swaps, and should not require evaluation of ν for other S-boxes (except for the
comparison of the new S-box with the previous score).

Predictor with the best success rate leads to an optimal evolution algorithm for improving S-boxes
with swaps from a random starting point (as any other algorithm would require to assess more S-boxes
along the way).

Predicting evolution steps with AI

Our goal is to create black-box oracle for π that for given S-box S returns some swap τ , such that τ(S)
has better quality than S with higher probability p than a random guess (probability pr). Quality of the
oracle is measured by the increase in probability, p− pr.

∗This work was in part supported by the Slovak Research and Development Agency under the Contract no. APVV-23-
0292, and in part by grant VEGA 1/0105/23.



The input S-box will be represented by its vector of values, which is sequence of all 2n (non-repeating)
values from Fn2 . The output of the oracle is a tuple of values i, j ∈ Fn2 . These are the inputs of the S-box,
corresponding to positions of values that need to be swapped.

Our approach general approach to this problem is as follows:

• Prepare a (large) dataset of positive examples (S, i, j) ∈ S × Fn2 × Fn2 . S-boxes in the dataset are
chosen randomly. An exhaustive (or random) search of pairs (i, j) is performed for each S-box. The
dataset contains only those pairs that improved quality of the S-box. We use simple function ν that
only uses the differential properties of the S-box.

Let di denote maximum value in DDT of S-box Si, and let ci denote the number of times di is
present in the DDT of Si. Then ν(Si) > ν(Sj) if di < dj , or if di = dj , and ci < cj . We have not
explored different scoring functions, such as proposed in [2]. The utility of a more complex scoring
function in our use case is questionable, as the main idea is to train on a dataset of examples of
S-box improving swaps. Our (untested) hypothesis is that the method should be agnostic to the
exact details of the scoring function.

• Train a neural network (with some specific architecture) to work in a Seq2Seq mode using the
provided dataset (some part of it). The input sentence for translation is S-box S, the output
sequence is the pair (i, j).

• Use the trained neural network as a predictor π, and evaluate its quality (using a validation dataset
of S-boxes).

Experimental results

In our experiments we focus on two categories of S-boxes: small S-boxes with n = 4, and large S-boxes
with n = 8. We have prepared two corresponding datasets of N = 20000 S-boxes each. In order to obtain
S-boxes with higher quality, we have iterated a greedy algorithm starting from a random S-box, and stored
unique S-boxes and corresponding swaps that improve differential properties (differential uniformity, as
well as number of DDT elements with maximal value was taken into account).

In the experiments, both S-boxes and swaps are represented as one-hot encoded vectors (essentially,
an S-box is stored as a permutation matrix, and similarly the swap positions). We trained two different
neural network architectures on the data from the dataset, with the goal of predicting a suitable swap
that improves the differential profile of the input S-box

Sequence-to-Sequence LSTM Model

The first approach is based on a reccurent neural network architecture known as Long short-term memory
(LSTM). We use LSTM architecture suitable for Sequence-to-Sequence task: the input sequence is the
one-hot encoded vector of values of the S-box, and the output sequence is the (potentially) suitable
swap (sequence of length two). Technically, the architecture transforms the input S-box into an internal
representation through LSTM layers, and then a final Dense layer generates output that contains two
vectors of length 256 (in general 2n, for n-bit S-boxes) that each correspond to one value of the swap.
Each vector contains scores assigned for all possible 2n values (corresponding to the likelihood that the
value at this position should be swapped). To select the swap, we use the pair with the highest score each.

CNN-Based Model

The second approach uses a more simple convolution neural network architecture. The input first passes
through a Conv2D layer, followed by a MaxPooling2D layer, which reduces dimensionality by selecting
the most relevant features. This process is repeated three times, with the Conv2D layers progressively
increasing in filter size: 32, 64, and finally 128 filters. The output is flattened into a one-dimensional
vector using the Flatten layer. Output from that layer is then passed trough Dense layer with activation
function ReLU. Followed by another Desne layer with output size of two times 256 (2n in general), and a
softmax activation function generates the final swap prediction, similar to LSTM case.



Results

We have performed a series of experiments with various LSTM and CNN settings with both 4-bit and
8-bit S-boxes on our dataset. In Table 1 we summarize the main results of the experiments. In the first
row, we give a probability (and standard deviation) that random swap improves S-boxes from a validation
set (random subset of the dataset). In the next two rows we present the results of the swaps obtained
with the best setting in each case (LSTM vs. CNN).

Method 4× 4 8× 8
random 34.65± 0.87 % 19.96± 0.55 %
LSTM 36.60 % 23.96 %

convolution 35.40 % 21.29 %

Table 1: Results of the experiments with 2 architectures, compared to random selection.

If we use normal distribution to model the success rate of the random selection, the probabilities
for n = 4 are two low in both LSTM and CNN case to be considered sufficiently better than random.
Similarly, in case n = 8, convolution network does not produce a significant result. On the other hand,
our LSTM results are more the 7σ better than the random case, which indicates that the model was able
to learn some information from the input dataset, and produces better predictions than random guesses.

Using our neural predictor, we might improve the (heuristic) search for better quality S-boxes (such as
in [3]). While on average, we need to explore 5 random swaps to get an improvement (in every iteration
of the search), neural predictor reduces this to only 4 swaps. Moreover, the neural predictor produces a
distribution of scores for each potential swap, thus it might be even more efficient in practice. Note that
these results were obtained with only limited resources, and with larger datasets and more resources these
results have a potential to improve further.

An open question is whether similar results can be also obtained for non-linearity measures, and for
a combination of multiple S-box quality criteria. Furthermore, in our experimental dataset, the input S-
boxes have different qualities. It would be interesting to see how the quality of the input S-box influences
the prediction quality. This type of experiment would however require a large dataset of high-quality S-
boxes (that can be improved further). From the cryptographic research point of view, it is an interesting
theoretical question, why the black-box prediction works, and whether we can reproduce these black-box
results with proper (mathematical) algorithms.
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The power of three in pseudorandomness

Katalin Gyarmati and Károly Müllner

Extended abstract

In 1997, Mauduit and Sárközy introduced the following quantitative mea-
sures in order to study the pseudorandomness of finite binary sequences.

Definition 1. For a binary sequence

EN = {e1, . . . , eN} ∈ {−1,+1}N ,

define the well-distribution measure of EN as

W (EN) = max
a,b,t

∣∣∣∣∣
t∑

j=1

ea+jb

∣∣∣∣∣ ,

where the maximum is taken over all a, b, t such that a ∈ Z, b, t ∈ N and
1 ≤ a ≤ a+ tb ≤ N , while the correlation measure of order ℓ of EN is defined
as

Cℓ(EN) = max
M,D

∣∣∣∣∣
M∑

n=1

en+d1 . . . en+dℓ

∣∣∣∣∣ ,

where the maximum is taken over all D = (d1, . . . , dℓ) and M such that
0 ≤ d1 < · · · < dℓ < M + dℓ ≤ N .

These measures characterize the necessary random properties of binary
sequences in various applications (such as cryptography, Monte Carlo meth-
ods, and many others). It’s also crucial to have strong pseudorandom con-
structions for which these measures are provably small. According to pa-
pers by Cassaigne, Mauduit, Sárközy [2] and later Alon Kohajakawa Maduit,
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Moreira, and Rödl [1], the pseudorandomness of a sequence En is considered
to be very strong if

W (EN) ≪ N1/2(logN)c,

Cℓ(EN) ≪ N1/2(logN)cℓ

hold at least for small ℓ’s. In the literature, there are numerous constructions
with strong pseudorandomness properties (e.g., see [3], [5], [4], [6], [7], [8],
[9], [10], [12], [13], [14], [15]). However, the most natural and strongest
construction to date is the following:

Construction 2 (Hoffstein, Liemann). Let p be a prime and f(x) ∈ Fp[x]

be a polynomial of degree k. Define Ep = (e1, . . . , ep) by:

en =





(
f(n)
p

)
for (f(n), p) = 1,

+1 for p | f(n).

This construction was introduced by Hoffstein and Leimann, but nothing
has been proven about the pseudorandom properties of the sequences. One
year later, Goubin, Mauduit and Sárközy proved the following:

Theorem A [Goubin, Mauduit, Sárközy] Let p be a prime and f(x) ∈
Fp[x] be a polynomial of degree k, which is not of the form cg(x)2, where
c ∈ Fp, g(x) ∈ Fp[x]. Define Ep = (e1, . . . , ep) by Construction 2. Then

W (Ep) ≪ kp1/2 log p.

Assume that one of the following three conditions for ℓ, which is the order of
the correlation, holds true:
(i) ℓ = 2;
(ii) ℓ < p and 2 is a primitive root modulo p;
(iii) (4k)ℓ < p.
Then

Cℓ(Ep) ≪ kℓp1/2 log p.
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Although, Construction 2 has strong pseudorandom properties, it is con-
ceivable that an algorithm might be found in the future which determines
the value of the polynomial f from knowing pε consecutive elements of the
sequence Ep (if the degree of the polynomial is under a certain bound). In
this case, the entire sequence (e.g., used as the secret key) might be deter-
mined from a few elements of the sequence. This can be facilitated by an
idea that only slightly modifies the above sequence using not one but three
different polynomials. For this, we introduce the following construction:

Construction 3. Let p be a prime and f(x), g(x), h(x) ∈ Fp[x] be a polyno-
mials of degree ≤ k. Define Ef,g,h = (e1, . . . , ep) by:

en =





(
f(n)
p

)
, if

(
h(n)
p

)
∈ {0, 1} and p ∤ f(n)g(n)(

g(n)
p

)
, if

(
h(n)
p

)
= −1 and p ∤ f(n)g(n)

1, if p | f(n)g(n).

Note that if f = g, then this construction coincides with Construction 2.
In this construction, if p ∤ f(n)g(n)h(n), then the following formula can

be proved:

en =
1

2

(
1 +

(
h(n)

p

))(
f(n)

p

)
+

1

2

(
1−

(
h(n)

p

))(
g(n)

p

)
. (1)

From this formula we will prove the following using multiplicative character
techniques (e.g., Weil theorem):

Theorem 4. Let p be a prime and f(x), g(x), h(x) ∈ Fp[x] be three polyno-
mials of degree k, that have no multiple roots; and

f(x) ∤
p∏

t=1

g(x+ t)h(x+ t) and g(x) ∤
p∏

t=1

h(x+ t). (2)

Define Ef,g,h = (e1, . . . , ep) by Construction 3. Then

W (Ef,g,h) ≪ kp1/2 log p.

Assume that one of the following three conditions for ℓ, which is the order of
the correlation, holds:
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(i) ℓ = 2;
(ii) ℓ < p and 2 is a primitive root modulo p;
(iii) (4k)ℓ < p.
Then

Cℓ(Ef,g,h) ≪ 2ℓℓkp1/2 log p.

For symmetric reasons, the theorem holds even if (2) is replaced by g(x) ∤
∏p

t=1 f(x+ t)h(x+ t), f(x) ∤
∏p

t=1 h(x+ t).
Thus, even though Construction 3 is slightly more complicated, we still

have strong bounds for the pseudorandom measures.
At first glance, checking condition (2) may be unpleasant, but it does

not require much computation for small primes p using polynomial divison.
There are several ways to avoid this polynomial division, one of which is
to use only irreducible polynomials. Another possibility is that f, g and h

are all products of second degree irreducible polynomials. We will prove the
following

Theorem 5. Let p be prime, and F , G, H be sets containing only quadratic
non-residues modulo p for which

F 6⊆ G ∪H and G 6⊆ H.

The polynomials f , g, and h are defined as follows.

f(x) =
∏

n∈F
(x2 − n), g(x) =

∏

n∈G
(x2 − n), h(x) =

∏

n∈H
(x2 − n).

Define Ef,g,h = (e1, . . . , ep) by Construction 3. Then,

W (Ef,g,h) ≪ kp1/2 log p

Cℓ(Ef,g,h) ≪ 2ℓℓkp1/2 log p.

It is also clear that condition (2) cannot be completely dropped from
Theorem 4. This is because, if, for example f(x)g(x)h(x) is a square of a
polynomial, then the elements of the sequence Ef,g,h are all 1, with a few
exceptions, according to (1). The strength of Construction 3 will also be
supported by numerical calculations, and we will compare pseudorandom
measures of some sequences in Constructions 1 and 2.
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On the measures of pseudorandomness of

binary lattices

Károly Müllner

Extended Abstract

Pseudorandom binary lattices play a central role in various applications
where multidimensional randomness is needed. In this paper, we propose and
analyze a simple construction method based on two short binary sequences.
The study of pseudorandomness in higher dimensions is a natural extension
of classical one-dimensional sequence analysis. We will also examine a couple
of cases in 3 dimensions.

In 1997, Mauduit and Sárközy [8] introduced a new constructive approach
in order to study the pseudorandomness of binary sequences

EN = {e1, . . . , eN} ∈ {−1, 1}N . (0.1)

In particular, in [12], Mauduit and Sárközy �rst introduced the following
measures of pseudorandomness: the well-distribution measure of EN is de-
�ned by

W (EN) = max
a,b,t

∣∣∣∣∣
t−1∑

j=0

ea+jb

∣∣∣∣∣ , (0.2)

where the maximum is taken over all a, b, t ∈ N with 1 ≤ a ≤ a+(t−1)b ≤ N ,
and the correlation measure of order k of EN is de�ned as

Ck(EN) = max
M,D

∣∣∣∣∣
M∑

n=1

en+d1 · · · en+dk

∣∣∣∣∣ ,

where the maximum is taken over all D = (d1, d2, . . . , dk) and M such that
0 ≤ d1 < d2 < · · · < dk ≤ N − M . They also introduced the combined

(well-distribution-correlation) pseudorandom measure of order k:

Qk(EN) = max
a,b,t,D

∣∣∣∣∣
t∑

j=0

ea+jb+d1 · · · ea+jb+dk

∣∣∣∣∣ , (0.3)
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where the maximum is taken over all a, b, t, and D = (d1, d2, . . . , dk) such
that all the subscripts a+ jb+ di belong to {1, 2, . . . , N}. The sequence EN

is considered to be a "good" pseudorandom sequence if both W (EN) and
Ck(EN) are small in terms of N .

In order to study the multidimensional analog of pseudorandomness,
Hubert, Mauduit, and Sárközy [7] introduced the following de�nitions and
notations:

Denote by InN the set of n-dimensional vectors whose coordinates are
integers between 0 and N − 1:

InN = {x = (x1, . . . , xn) : x1, . . . , xn ∈ {0, 1, . . . , N − 1}}.

This set is called an n-dimensional N -lattice or, brie�y, an N -lattice.
In [7], the de�nition of binary sequences is extended to more dimensions

by considering functions of type

η(x) : InN → {−1,+1}.

If x = (x1, x2, . . . , xn) so that η(x) = η((x1, x2, . . . , xn)) then we will slightly
simplify the notation by writing η(x) = η(x1, x2, . . . , xn).

Such a function can be visualized as the lattice points of the N -lattice
replaced by the two symbols + and −; thus, they are called binary N -lattices.
Binary 2- or 3 dimensional pseudorandom lattices also have many applica-
tions, e.g., in the encryption of digital images or maps.

The de�nition of InN is extended to more general lattices in the following
way: Let u1,u2, . . .un be n linearly independent vectors, where the i-th
coordinate of ui is non-zero, and the other coordinates of ui are 0, so ui is
of the form (0, 0, . . . , 0, zi, 0, . . . , 0). Let t1, t2, . . . , tn be integers with 0 ≤
t1, t2, . . . , tn < N . Then we will call the set

Bn
N = {x = x1u1+x2u2+· · ·+xnun : 0 ≤ xi|ui| ≤ ti(< N) for i = 1, 2, . . . , n}

an n-dimensional box N -lattice or, brie�y, a box N -lattice.
In [7], Hubert, Mauduit and Sárközy introduced the following pseudoran-

dom measure of binary lattices:

De�nition 1. Let

η : InN → {−1,+1}.
The pseudorandom measure of order ℓ of η is de�ned by

Qℓ(η) = max
B,d1,...,dℓ

∣∣∣∣∣
∑

x∈B
η(x+ d1) · · · η(x+ dℓ)

∣∣∣∣∣ ,

2



where the maximum is taken over all distinct d1,d2, . . . ,dℓ ∈ InN and all box

N-lattices B such that B + d1, . . . , B + dℓ ⊆ InN .

Then, η is said to have strong pseudorandom properties, or, brie�y, it is
considered a good pseudorandom lattice if the measure Qℓ(η) is small (much
smaller than the trivial upper bound Nn) for �xed n and ℓ and large N .
This terminology is justi�ed by the fact that, as was proved in [7], for a truly
random binary lattice de�ned on InN and for �xed ℓ, the measure Qℓ(η) is
small (less than Nn/2 multiplied by a logarithmic factor).

So far, numerous pseudorandom lattices have been generated with op-
timal pseudorandom measures, see e.g., [2], [3], [5], [7], [9], [10], [11], and
[6].

For almost all constructions of pseudorandom binary lattices with strong
pseudorandom properties the generation of the elements of the lattice is quite
slow. However, in certain applications, we need to generate the elements of
the lattice quickly. In these cases, we recommend the following algorithm:
Let E = (e1, e2, . . . , eN) and F = (f1, f2, . . . , fN) ∈ {−1,+1}N be two pseu-
dorandom binary sequences with strong pseudorandom properties; then, we
de�ne the binary lattice η = ηE×F : I2N → {−1, 1} by

η(x, y) = ex+1fy+1

The main results concern the estimation of pseudorandomness measures
of binary lattices derived from two sequences. We approximate the lattice
pseudorandomness measures using combined measures of the base sequences.
The results distinguishes between even and odd cases: In the odd case, the
combined measure factorizes, while in the even case, a nontrivial lower bound
is obtained. These di�erences highlight the fundamental asymmetry between
the two cases.

Then, the elements of the lattice can be generated rapidly since each
element can be obtained by a simple multiplication, where the multiplicands
are all 1 or −1. The question is, how large are the pseudorandom measures of
the lattice? I can determine the exact values of Q2 and Q2k+1 of the lattice,
but unfortunately, the value of Q2k is always large if k ≥ 2:

Theorem 1. Let E ∈ {−1,+1}N and F ∈ {−1,+1}N be pseudorandom

binary sequences. Then,

Q2ℓ+1(ηE×F ) =

max{Q1(E), Q3(E), . . . , Q2ℓ+1(E)}max{Q1(F ), Q3(F ), . . . , Q2ℓ+1(F )}

Theorem 2. Let E ∈ {−1,+1}N and F ∈ {−1,+1}N be pseudorandom
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binary sequences. Then,

Q2(ηE×F ) = max{NQ2(E), NQ2(F )}

Theorem 3. Let E ∈ {−1,+1}N and F ∈ {−1,+1}N be pseudorandom

binary sequences and ℓ ≥ 2. Then,

Q2ℓ(ηE×F ) ≥ (N − ℓ+ 1)2

This generation method is viable when we want to use the lattices in
applications where it is su�cient that the measures Q1, Q2, and Q3 are
small (e.g., Monte Carlo methods). If we still need Q4 to be small (e.g., in
encryptions), we need to look for another method.

Note also that Gyarmati [1] generated a sequence of length N2 from the
lattice η : I2N → {−1,+1}, by writing the rows of the lattice consecu-
tively from the bottom up to the top. She proved that if, for the lattice
η : I2n → {−1,+1}, Qk is small, then the resulting sequence of length
N2 has a small Ck measure. By incorporating this method into our pre-
vious construction, we can generate a lattice from two sequences E and
F ∈ {−1,+1}N , and then a sequence of length N2, by writing the rows of
the lattice consecutively in sequence from the bottom up to the top. Then,
the resulting sequence of length N2 has small pseudorandom measures W ,
C2, and C3 if the measures Q2(E), Q2(F ), Q3(E), and Q3(F ) of the original
sequences of length N are small. With this technique, we obtained a much
longer sequence (length N2) from two short sequences (length N), such that
the low-order pseudorandomness measures W, C2, and C3 are close to opti-
mal.
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1 Introduction
A Vehicle Ad Hoc Network (VANET) is a system that enables communication among vehicles (V2V) and between vehicles
and infrastructure (V2I) within a range of approximately 100 to 300 meters. Its primary goals are to enhance road safety
and optimize traffic. Ensuring more secure communication among VANET entities is vital. These networks are vulnerable
to numerous attacks, such as spoofing, tampering, and replay, all of which compromise the system’s reliability. ( [9]). For
example, if a malicious vehicle transmits false traffic information, it could cause congestion or even life-threatening scenarios.

An essential requirement is the validation of incident reports while simultaneously protecting the driver’s private data and
preserving the anonymity of the message sender ( [7]). A widely adopted approach to achieving sender anonymity involves
the use of pseudonyms ( [1], [8]). Typically, vehicles obtain short-lived anonymous certificates, referred to as pseudonyms,
from a trusted authority (TA), which are then used to sign and encrypt outgoing messages. However, interaction with trusted
authorities (TA) causes computational overhead, especially for high-speed vehicles that require frequent certificate renewals.
Furthermore, the use of the same pseudonym can compromise user privacy, GPS data can expose the vehicle trajectory. To
guarantee unlinkability, it is necessary for vehicles to frequently update their pseudonyms.

We propose an identity- and pseudonym-based Authenticated Anonymous Batch Message Broadcast (AABMB)
protocol for VANETs. In the proposed model, when an incident (such as an accident or traffic jam) occurs, vehicles broadcast
messages anonymously to other vehicles and the surrounding infrastructure. Receivers are able to verify the authenticity of
these messages, ensuring that they are sent by eligible vehicles, i.e., registered and nonmalicious participants. In our scheme
TA stores the Master Secret Key (MSK) to prevent its leakage in the event of OBU compromises. On-board units (OBUs)
are capable of generating an unlimited number of pseudonyms independently, removing the need for pseudonym-exchange
mechanisms. Formal security analysis is provided based on computationally infeasible problems.

Schemes MSK stored Pseudonyms Provably
by TA by OBU Secure

Pournaghi et al. [12] no no no
Bayat et al. (2020) [4] no no yes
Bayat et al. (2015) [3] no yes no
Zhang et al. [18] no yes no
Debiao He et al. [10] no yes yes
Tzeng et al. [15] no yes yes
Wang et al. [17] yes no no
Bansal et al. [2] yes no yes
Huszti et al. [11] yes yes no
This work yes yes yes

Table 1: Comparison to other schemes.

2 Preliminaries
Let E be an elliptic curve over a finite field Fq, where q is a prime power. Given a finite cyclic group of elliptic curve points
G with order n.

Definition 1. Given P, aP, bP ∈ G for some a, b ∈ Z∗
q , compute abP . Computational DiffieHellman(CDH) is considered to

be computationally infeasible.

Shamir introduced the idea of identity-based encryption in [14]. These schemes usually are based on bilinear maps.

Definition 2. Suppose that G1 is an additive and G2 is a multiplicative group of order q, where q is a large prime. A
function ê : G1 ×G1 → G2 is considered to be an admissible bilinear map such that:

• Bilinear: For all P,Q ∈ G1 and all a, b ∈ Z, ê(aP, bQ) = ê(P,Q)ab.

• Non-degenerate: The map does not send all pairs in G1 ×G1 to the identity in G2. Since G1, G2 are groups of prime
order, if P is a generator of G1 then ê(P, P ) is a generator of G2.

• Computable: There is an efficient algorithm to compute ê.

For all P,Q,R ∈ G1, ê(P +Q,R) = ê(P,R) · ê(Q,R) and ê(P,Q+R) = ê(P,Q) · ê(P,R). In case of Weil and Tate pairings,
G1 is an elliptic-curve group, and G2 is the multiplicative group of a finite field. The Decisional Bilinear Diffie-Hellman
(DBDH) assumption is introduced in [6] by Boneh and Franklin.
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Definition 3. Given P,A = aP,B = bP,C = cP ∈ G1 for some a, b, c ∈ Z∗
q , moreover let be z ∈ Z∗

q . The Decisional
Bilinear Diffie-Hellman problem consists of constructing an algorithm to efficiently distinguish (P,A,B,C, ê(P, P )abc) from
(P,A,B,C, ê(P, P )z).

3 The proposed AABMB scheme

TA:γP, βP, γβP

OBU (V ) RSU (R)
xi local secret key
xiP local public
parameter

s, t, y ∈ Z∗
q random

A1 = ê(QR, γQV )
M1 = EncQR(A1, Qv, t, sγQV , yP )
Check QR on Rev. List

M1−−−−−→
Decrypt : DecγQR(M1)
Check QV on Rev. List

A1
?
= ê(QV , γQR)

Check QV is valid
Calculate : ê(QV , yP )xi

Store : (QV , yP )

AUL : ê(xiQV , yP )β

xisγQV ,txiQV←−−−−−−−−−−−
xisγQV · s−1, txiQV · t−1

ê(xiQV + xiγQV , P )
?
=
ê(QV + γQV , xiP )

xiγQV , xiQV kept secret

Figure 1: Communication setup

OBU RSU/OBU (W)
a ∈ Z∗

q random
AID = a · xiQV

A1 = a−1 · y · βP
h = H2(AID, A1,M, T )
A2 = a−1 · y · βγP + h · a · xiγQV

AID ||A1||A2||M||T−−−−−−−−−−−−−→ Checking:
h = H2(AID, A1,M, T )

ê(A2, P )
?
=

ê(A1 + h ·AID, γP )
ê(AID, A1) on the AUL

Figure 2: Incident report

3.1 Participants and lists
We differentiate three participants: the Trusted Authority (TA), the On-board Units (OBUs), and the Roadside
Units (RSUs). Trusted Authority (TA) is responsible for defining the system parameters, generating cryptographic
keys, and managing public keys. Additionally, it loads data to OBUs online during system initialization or updates. On-
board Units (OBUs) are devices integrated into vehicles and are equipped with a Trusted Execution Environment (TEE).
They report local traffic information when necessary. Roadside Units (RSUs) are fixed infrastructure components also
equipped with a TEE. They facilitate communication with the OBUs, other RSUs, and the TA. Each RSU is responsible for
authenticating OBUs that enter its communication range.

In the proposed protocol, two lists are maintained: the Revocation List and the Anonymized User List. Revocation
List contains the identifiers of malicious users who have been excluded from the system, as well as users whose secret keys
have been compromised. This list is maintained and updated by the TA whenever an anonymous user is revoked or a new
key pair is issued. The revocation list is stored locally by both OBUs and RSUs. Note that, this list is not checked during
the incident reporting process, thereby enhancing efficiency. Anonymized User List is managed by the RSUs and the TA.
It allowes the system to revoke a user’s anonymity if malicious behavior is detected.

3.2 Phases
The protocol consists of three phases: Initialization, Communication Setup and Incident Report. In the Initialization
phase, TA generates the identity-based key pairs for the participants and initialize the system parameters, i.e. public
parameters, the groups G1, G2, the bilinear map e : G1 × G1 → G2, a generator element P of G1, the hash functions
H1 : {0, 1}∗ → G1 and H2 : {0, 1}∗ → Z∗

q . TA randomly chooses γ ∈ Z∗
q , which is the master secret key, and β ∈ Z∗

q , a secret
system parameter, and calculates public γP, βP, γβP .

The Trusted Authority (TA) calculates an identity-based key pair for each participant. Each vehicle receives an
identity value defined as QV = H1(IDV ||T ), where IDV is the license plate and T is the timestamp of the corresponding
key generation. RSUs also get QR = H1(IDR||T ) as an ID, where IDR is its GPS coordinate. The corresponding secret
keys γQV and γQR are also computed by the TA. These values serve as long-term parameters and identity-based keys used
during the protocol. Furthermore, the two lists, the Revocation List and the Anonymized User List, are initialized.
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The goal of the Communication Setup phase is to deliver authorized secret and public keys to eligible vehicles. This
authorized key pair allows vehicles to communicate in a way that is both anonymous and authenticated. When a vehicle
enters the domain of an RSU, the communication setup protocol is initiated between the OBU and the RSU.

Let the RSU be denoted by R and the vehicle by V . During Communication Setup, mutual authentication is performed
between R and V , and each party checks if the corresponding identifier (QV or QR) appears in the current Revocation
List. The missing identifier, which is based on a valid number plate IDV, means that vehicle V is eligible for message.

The RSU randomly generates a local secret key xi ∈ Z∗
q and computes the corresponding local public key xiP . Value xi

authorizes the OBU to report an incident in the RSUs domain after successful registration. Whenever the identity of an OBU
registered within the RSUs domain is added to the Revocation List, the RSU generates a new xi, and all OBUs within its
domain are required to establish a new authorized secret key pair (xiQV , xiγQV ). OBU chooses s, t, y ∈ Z∗

q randomly. The
value s is needed to randomize γQV to prevent data leakage of xiγQV and also the secret key of the OBU for the RSU.

It is also protected against active attacks, such as masquerading and replay attacks. The value t is a challenge in
determining whether the RSU can correctly decrypt the encrypted message. The curve point yP represents the OBUs AUL
parameter. The message M1 is constructed using Boneh and Franklin encryption over the concatenation of QV , A1, t, sγQV ,
and yP .

Mutual authentication is based on challenge-and-response using the long-lived secret keys of the parties. The RSU verifies
the validity of A1 = ê(γQV , QR) by comparing it with ê(QV , γQR). OBU verifies ê(xiγQV +xiQV , P ) = ê(γQV +QV , xiP ).
If these are equal, RSU decrypted the ciphertext M1 correctly.

The TA and the RSU collaboratively compute the value ê(QV , yP )xiβ and insert it into the AUL. The TA aggregates
data from multiple vehicles, permutes the resulting values, and uploads them to the AUL in a single batch. This batching and
permutation process prevents the possibility of correlating the uploaded data with the OBU that registered at a specific time.
Additionally, the entries on the AUL are periodically re-permuted and exponentiated with a fresh random value generated
by the TA, further enhancing unlinkability and long-term privacy. Figure 1 shows in detail the steps of the phase.

In the Incident Report phase, a vehicle anonymously transmits messages to other OBUs and the RSU whenever an
incident occurs. For each message, the sender vehicle generates a fresh pseudonym (AID = axiQV , axiγQV ), where a ∈ Z∗

q

is chosen at random. This pseudonym serves as proof of the sender’s eligibility, i.e. demonstrating that the RSU has issued
an authorized key pair to the sender. The value A2 is computed based on the incident report, a timestamp, the sender’s
authorized secret key, and the AUL parameter. Value A1 is included for verification purposes. Since the format of incident
reports are standardized, identical reports sent by different OBUs at the same time can be aggregated into a batch. This
enables efficient verification, requiring only two bilinear map computations per batch.

Figure 2 illustrates in detail the structure of the incident report. These messages are broadcast by OBUs to all other
OBUs and the RSU within the same domain. Receivers equipped with public values (P, γP ) can verify the validity of the
message received. If a malicious message is detected, it is reported, and the anonymity of the sender is revoked. The
reporting entity submits AID and A1 of the suspected malicious user to both the RSU and the TA. The TA then computes
ê(A1, AID)β

−1 with β, and applying an exhaustive search RSU finds (QV , yP ) related to ê(QV , xiyP ). TA inserts QV into
the Revocation List and the fresh list is shared.

4 Security analysis
4.1 Security requirements
We focus on the requirements of the Incident Report, particularly the anonymity of the sender, as well as the authenticity
and integrity of the transmitted message. Additionally, we address the mechanisms for anonymity revocation and the
non-repudiation of malicious messages. We refer to [11], where the secrecy of these properties and the authentication of
the communicating entities in the Communication Setup phase are formally proven using ProVerif. It is verified that
adversaries are unable to impersonate legitimate OBUs or RSUs, and that the generated authorized secret keys remain
confidential. Furthermore, it is ensured that authorized secret keys are issued exclusively to eligible participants.

Whenever an OBU reports an incident, the privacy of the vehicle owner must be protected. It is crucial that the protocol
guarantees the anonymity of the reporting entities. Therefore, incident report must not leak any information that could
reveal the senders identity. To achieve user anonymity, the protocol must ensure that incident reports are unlinkable, i.e., an
adversary should not be able to associate multiple messages with the same sender. Although anonymous messaging enables
privacy, it also creates opportunities for authorized vehicles to behave maliciously. In cases where an OBU broadcasts an
invalid or false message, the TA must be able to revoke the anonymity of the sender. Furthermore, the non-repudiation of
incident reports must also be ensured.
In the case of VANETs, both OBUs and RSUs might become senders and receivers.

We apply the malicious but cautious security model, which introduced in [13]. In the context of VANETs, OBUs are
typically assumed to be malicious, i.e., they may deviate arbitrarily from the protocol specification. However, we consider
RSUs to behave more cautiously. We adopt the model as malicious-but-cautious under the assumption that an RSU does not
initiate any attack that would result in verifiable evidence of its misbehavior. We also assume that secret keys and system
parameters remain protected from adversaries, as they are securely stored within the RSUs Trusted Execution Environment
(TEE). However, the RSUs database may be compromised and leaked to the adversary.

We introduce the existentially unforgeable under an adaptive chosen-sender attack that is considered in the security
evaluation. Loosely speaking, the adversary is able to access the polynomial number of broadcast messages, where the
senders are chosen adaptively and then output new valid messages. We have decided to choose the chosen-sender attack

3



instead of the chosen-message attack for the following reasons. In the VANET environment, there are only a few predefined
messages, hence the attacker would be limited too much if he could only intercept messages from one sender. Furthermore,
the secret keys of different senders were generated with the same master key, i.e. valid messages from different senders were
generated with the same secret key parameter (similar to the chosen-message attack).

Definition 4. (adaptive chosen-sender attack)
We define the adaptive chosen-sender attack as follows. The adversary A selects senders for a given receiver R and proceeds
honest and valid executions of the Incident Report phase of the protocol polynomial times in security parameter. We assume
that A is allowed to select senders and run the oracle after receiving the transcripts as well.

Definition 5. Message broadcasting is existentially unforgeable under an adaptive chosen-sender attack, if for all probabilistic
polynomial-time adversaries A the probability, that A produces a new valid message M based on the transcripts received during
the attack is negligible.

Definition 6. If an adversary is deterministic and restricts its action to choosing a sender and a receiver oracle and then
faithfully conveying each flow from one oracle to the other, with the sender oracle beginning first, it is called benign.

Definition 7. A protocol is a secure anonymous authenticated message broadcast if

1. In the presence of the benign adversary, the sender and the receiver oracle always accept and

for every adversary A and uncorrupted receiver and sender oracles

2. message broadcasting is existentially unforgeable under an adaptive chosen-sender attack and

3. for the tested oracles chosen by A the AdvA(κ) is negligible.

Theorem 1. The proposed authenticated anonymous message broadcast protocol is secure in the malicious-but-cautious
model if solving the Computational Diffie-Hellman is computationally infeasible. The bilinear map is considered in the
generic bilinear group [5] model and the hash functions are supposed as random oracles.

The proposed AABMB scheme meets the requirements. Theorem 1 states that our scheme is secure according to Definition
7, hence it guarantees message authenticity and integrity for incident reports and sender anonymity. Additionally, the
anonymity of malicious senders can be revoked. Together, TA and RSU can calculate the ID of the vehicle following the
Malicious Use Management process. Unlinkability of incident reports is also provided. For each report message, the sender
chooses a new random value, denoted as a. The receiver then verifies whether the vehicle is on the list AUL by calculating
e(A,B). The elements within the list AUL are frequently randomized and permuted. Hence messages from the same sender
cannot be linked. Let us consider several relevant attacks for review. In a man-in-the-middle (MIM) attack, an attacker
positions themselves between a sender and a receiver. However, this attack is not relevant in our case because we send
incident reports as broadcast messages. Protection against impersonation and modification attacks is achieved since message
authenticity and integrity of incident reports are proven in Theorem 1. In a replay attack, an attacker intercepts and
retransmits incident report messages. Since the messages are timestamped, any retransmission with an invalid timestamp
will be rejected.

5 Conclusion and efficiency
This paper presents an Authenticated Anonymous Batch Message Broadcast (AABMB) designed for VANETs and based
on identity-based cryptography. Our protocol uses bilinear pairings and does not require devices to store the master secret
key. OBUs only need to download the Revocation and the Anonymized User Lists, and it is essential, if necessary, that
the sender’s anonymity can be revoked. We improve the efficiency comparing to [11] and also provide a detailed security
analysis for the Incident Report phase. We introduce a new adversarial model and a definition for a secure anonymous
authenticated message broadcast scheme and show that our scheme is secure if the Computational Diffie-Hellman problem
is computationally infeasible.

To assess efficiency, we compare the performance of AABMB with existing schemes referencing the execution times for
various cryptographic operations [2], [10], [17], and [19].

Scheme Inc. submission time Inc. verification time
Zhang et al. [18] 1.7161 ms 16.0581 ms
Bayat et al. [3] 7.8311 ms 18.7551 ms
Wang et al. [16] 1.7161 ms 18.748 ms
Our scheme 1.7161 ms 14.3491 ms

Table 2: Time efficiency of incident submission and verification
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How to Sign Quantum Messages

1 Background

Given the consistent advancements in quantum computing, it is expected that
future communications will feature quantum computers transmitting over quan-
tum channels. A fundamental question naturally arises: how can quantum data
be securely transmitted within the emerging quantum internet? One option is
for users to share secret keys through secure channels. Yet, this option quickly
becomes unwieldy as the number of users grows or when secure channels are not
readily available. Another option is to rely on quantum key distribution [7], but
this too is inefficient for large-scale applications as it requires several rounds of
interaction with each user. In contrast, classical information can be encrypted
and authenticated non-interactively via public channels. Can a similar feat be
achieved quantumly?

Towards this goal, several works have shown how to encrypt quantum in-
formation from standard assumptions [2, 3]. Yet, somewhat surprisingly, signing
quantum information has been shown to be impossible [6, 3]. On the other hand,
classical digital signature schemes have been crucial cryptographic primitives -
realizing a range of applications including email certification, online transactions,
and software distribution.

As a result of the impossibility, researchers have focused on an alterna-
tive approach to quantum authentication called signcryption. In this setting, the
sender uses the recipient’s public encryption key to encrypt a message before
signing it. Only the recipient can verify that the signature is authentic by us-
ing their secret decryption key which means that signcryption does not allow
for public verifiability – only a single receipient can verify. Such schemes clearly
rely on assumptions for public-key encryption such as trapdoor functions. Until
this point, it was widely believed that signcryption is the only way to evade
the impossibility result. In fact, Algaic, Gagliardoni, and Majenz [3] carried
out an in-depth analysis on the possibility of signing quantum information and
concluded that “signcryption provides the only way to achieve integrity and au-
thenticity without a pre-shared secret”. In this work, we address and revisit the
questions: Are there alternative methods to authenticate quantum information
without a pre-shared secret?

Interestingly, this question has important implications in quantum public
key encryption (QPKE). Traditionally, classical public-key encryption (PKE)
can not be built from one-way functions [17] and requires stronger assumptions
such as trapdoor functions. However, the works [15, 11] show that PKE can
be achieved from post-quantum secure classical one-way functions (pq-OWF) if
the public-keys are quantum! Yet, these constructions face a serious problem:
authenticating a quantum state is difficult. This issue is not addressed in these



works; as a result, these constructions need to assume secure quantum channels
for key distribution which is quite a strong physical setup assumption given the
goal of encryption is to establish secure communication over insecure channels.
On the other hand, there are well-established methods to distribute classical
keys, for instance through the use of classical digital signatures. Such procedures
are referred to as public-key infrastructure.

Ideally, we aim to establish encryption based on public-key infrastructure
and one-way functions. More simply, we want to authenticate the quantum keys
in QPKE schemes using classical certification keys. Prior to this work, the only
way to do this would be through the use of signcryption. But, then we are
back to relying on assumptions of classical PKE. In particular, the following is
another critical question addressed in this work: Is QPKE with publicly-verifiable
quantum public-keys possible from pq-OWFs?

Another relevant application of quantum signatures pertains to public-key
quantum money. Public-key quantum money has only been constructed assum-
ing indistinguishability obfuscation [1, 25, 23] or from new complex mathematical
techniques and assumptions [13, 21, 20] which we are only beginning to under-
stand and, some of which, have been shown to be susceptible to cryptanalytic
attacks [8]. Sadly, all existing constructions for indistinguishability obfuscation
are built on assumptions that are post-quantum insecure [4, 19, 18] or on new
assumptions [14, 24] that have been shown to be susceptible to cryptoanalytic
attacks [16]. As a result, public-key quantum money remains an elusive goal,
which raises the following important question addressed in this work: Is public-
key quantum money possible from standard computational assumptions?

2 Our Contribution

The impossibility of signing quantum information was first discussed by [6] and,
later, established more rigorously in [3]. Informally, the core argument is that any
verification algorithm, denoted as V , which can deduce the quantum message
(or some information thereof) from a signature, can be effectively inverted V †

to sign a different message.
The central innovation of this work lies in recognizing that, in specific

scenarios, this inversion attack consumes a prohibitive amount of resources. This
study explores two variations of this concept, with the resource factor taking the
form of either time or quantum space, as we clarify in the ensuing discussion.

2.1 Time-Dependent Signatures

We introduce the concept of time-dependent (TD) signatures, where the sig-
nature of a quantum message depends on the time of signing and the verifi-
cation process depends on the time of the signature reception. We construct
this primitive assuming the existence of post-quantum secure one-way functions
(pq-OWFs) and time-lock puzzles (TLPs) [22, 9].
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A TLP is a cryptographic primitive that enables hiding a message for a time
t from any QPT adversary but allows for decryption in a similar time t′ ≈ t.
Encryption should be much more efficient than decryption – specifically, the
encryption circuit should have depth log(t′) and size t′. [9, 10] showed that TLP
can be constructed, assuming the existence of pq-OWFs, from a random oracle.
Essentially, the TLPs ensure that the verification procedure demands prohibitive
time to inverse.

We provide a brief description of our construction for TD signatures. We
denote the algorithms for a one-time symmetric authenticated encryption scheme
on quantum messages as (1QGen, 1QEnc, 1QDec), which exists unconditionally
[6]. To sign a quantum message ϕ, we sample a key k← 1QGen(1λ) and authen-
ticate the message as τ ← 1QEnc(k, ϕ). Following this, we generate a TLP Z
requiring 1 hour to solve and whose solution is the message (k, T, sig), where T
corresponds to the time at the moment of signing and sig is a signature of (k, T )
under a classical signature scheme. Consequently, the signature of ϕ is (τ, Z).

Assume that a receiver gets the signature at time T ′. To verify, the receiver
solves the puzzle Z to learn (k, T, sig). If the signature sig is valid and the time
of reception is close to T , i.e. T ′ is within half an hour from T , then the verifier
outputs 1QDec(k, τ) to retrieve ϕ. However, it is crucial to understand that the
verifier can no longer use the pair (k, T ) to sign a new message because by
the time the puzzle is unlocked, it has already become obsolete! Specifically,
the time is at least T + 1, leading future verifiers to reject a message signed
using sig. Notice how the use of TLP gives us the ability to add intricacy to
the verification process, and this is precisely what is needed to circumvent the
impossibility result.

Dynamic Verification Keys: By utilizing verification keys that evolve over time,
we eliminate the need for TLPs in our construction. This leads to TD signatures
from pq-OWFs with dynamic verification keys. This approach also enforces a
verification process that is time-consuming to invert. However, in this case, this
enforcement is achieved more directly by delaying the announcement of the ver-
ification key. Specifically, we authenticate and encrypt a quantum messages in a
symmetric-key fashion, as before, but announce the symmetric key later. By the
time the key is revealed, allowing users to validate old signatures, it is too late
to exploit the key for forging new signatures. As a result, the verification key
must be continually updated to allow for new signature generation. An attrac-
tive aspect of this signature approach is that it can be based solely on pq-OWFs,
yielding surprisingly powerful applications from fundamental assumptions.

Applications: We demonstrate how to utilize TD signatures to build more secure
QPKE schemes where the quantum public-keys are signed with TD signatures. In
particular, our QPKE scheme features authenticated quantum public-keys that
resist adversarial tampering. This approach allows basing QPKE on pq-OWFs
and public-key infrastructure.

Furthermore, we employ TD signatures to construct a time-dependent
public-key quantum money scheme based on a standard computational assump-
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tion, namely pq-OWFs, where the quantum money consists of quantum signa-
tures. The verification key in this setting is dynamic, preventing a completely
offline money scheme. We are able to mitigate this issue and obtain a completely
offline public-key quantum money scheme by utilizing TLPs.

2.2 Signatures in the BQSM

Our second strategy for signing quantum information involves a verification pro-
cess that necessitates an impractical amount of quantum memory to invert. To
achieve this, we need to assume the adversary’s quantum memory (qmemory)
size is limited leading us to the bounded quantum storage model (BQSM) [12]. We
show that quantum messages can be signed with information-theoretic security
in this model i.e. without any computational assumptions.

Our construction requires users to have ℓ2 qubits of quantum memory,
where ℓ is the size of the quantum message to be signed, and is information-
theoretically secure against adversaries with s quantum memory where s can be
set to any fixed value that is polynomial with respect to the security parameter.
Note that s is not related to ℓ and only has an effect on the length of the quantum
transmissions involved. The construction is technically involved and builds on
previous work in the BQSM [5].

3 Conclusion

Signing quantum messages has long been considered impossible even under com-
putational assumptions. In this work, we challenge this notion and provide three
innovative approaches to sign quantum messages that are the first to ensure
authenticity with public verifiability.

More generally, this work demonstrates the power of utilizing time in cryp-
tography, showing how incorporating time-dependence can aid in the construc-
tion of fundamental cryptographic primitives such as QPKE, quantum signatures,
and public-key quantum money. This is particularly encouraging given the sim-
plicity and security of implementing time-dependence in practice. Therefore, an
interesting avenue for future work is to consider what other cryptographic prim-
itives can benefit from this approach.

Finally, we believe that the BQSM has not received adequate attention.
Given the practical challenges of storing and operating on quantum states, this
model is very well motivated. However, research on cryptographic primitives
within this framework remains limited. We hope that this work will encourage
further research in this area.
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